

회사소개서

TOTAL SOLUTION Raw materials & Die(Mold) & Die-casting & Machining & Assembly

끊임없는 연구개발을 통한 <mark>소재 부품산업</mark>의 선두주자

- 1. 주요연혁
- 2. 그룹 공장현황
- 3. 매출현황
- 4. 고객현황
- 5. 주요생산품목
- 6. 주요 생산설비 현황
- 7. 주요 품질보증 설비
- 8. One-Stop System:
 Overall Development Flow

TOTAL SOLUTION

Raw materials & Mold & Die-casting & Machining & Assembly 끊임없는 연구개발을 통한 자동차 부품산업의 선두주자

1. 주요 연혁

1987

동남정밀㈜ 설립

(Conventional/Vacuum)

名品 智知 名品 品質

• 1992

R&D센터 개소

1995

ISO9002 취득

2003

㈜코넥, 북경 동남 설립

2007

㈜DTM 설립

(Al alloy, RCS)

일조코넥 설립

차체부품양산 (고진공다이캐스팅)

현대자동차 우수협력사상

글로벌시장용 조향부품 양산 (독일 ZF社)

알루미늄소재 크로스멤버 개발

기술혁신대통령 표창

EV카 구동부품 수주/양산

테슬라 모델3/Y/X 구동/차체부품수주

2022

지역대표 중견기업 선정(전국5개사)

사업재편기업승인

국책 초대형사업 총괄 수주 (소재부품 기술-서브프레임)

2. 그룹 조직(현황)

자동차 부품사

동남정밀㈜

다이캐스팅 부품

인원 450 명

소재지: 울산광역시

㈜코 넥

다이캐스팅 부품

인원 500 명

소재지 : 충청남도 서산시

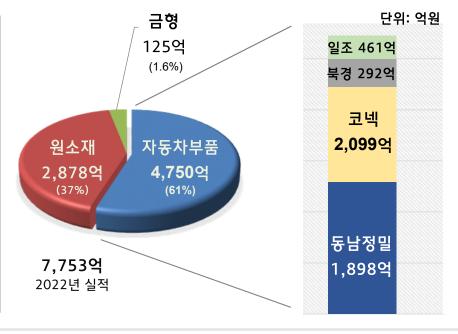
북경동남

다이캐스팅 부품

인원 150 명

소재지: 중국 북경시

일조코넥


다이캐스팅 부품

인원 160 명

소재지: 중국 산동성 일조시

원소재

2-1. 동남정밀(DNPC) ⁻본사(HPDC사업부)

주요 공정LINE (엔진, 변속기, HEV부품)

2-2. 동남정밀(DNPC) -1공장(EEV사업부)

주요 공정LINE (Eco경량부품 & EV차체부품)

초대형 AI & Mg HPDC

2500~3550톤 DCM

자동 가동(머시닝)라인

DCT부품 및 BIW차체품

5축 가공라인

BIW차체품 (대형 5축)

열처리(교정)

T6, T7열처리+변형교정

품질보증 공정

내부결함 및 치수검사

X-ray 자동전수검사 및 CMM

2-3. 동남정밀(DNPC) -2공장(머시닝사업부)

주요 공정LINE (엔진,변속기 & HEV품 Machining)

HEV 자동화 라인

MQ4 HSG & CVR

반자동 가동라인

Eng. & A/T부품(V/B)

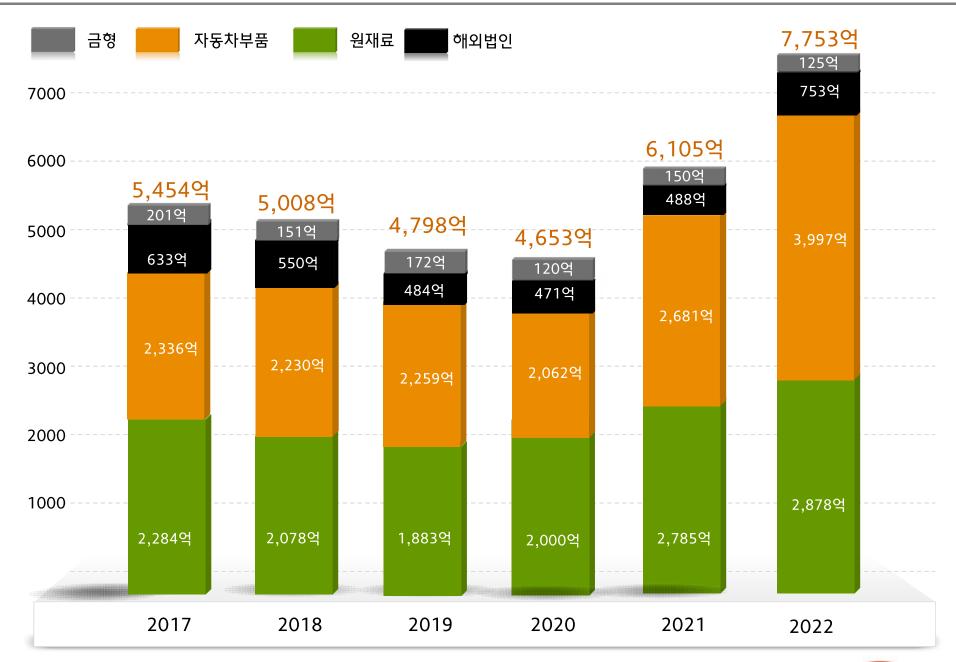
전륜6속 자동화 라인

전륜6속 CON HSG

함침공정

내압기밀부품(전수함침)

품질보증 공정


내부 기밀(누설) 및 치수검사

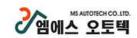
가공, 조립품 전수Leak검사 및 CMM

3. 매출 현황

4. 고객 현황

Customers

동남정밀㈜

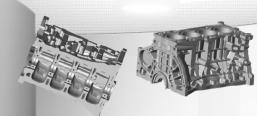


생우하더텍

BorgWarner

㈜동남

5. 주요 생산제품


엔진 전동화(EV) 변속기 전장 차체부품 샤시 쇽타워(차체) 변속기케이스 기어박스케이스 엔진실린더블럭 - FR(LH, RH) 크로스멤버 컨버터하우징 타이밍체인케이스 인버터케이스 차체 (BIW) (조향)랙하우징 디지털 클러스터 클러치하우징 엔진오일팬 냉각핀 래더프레임 밸브바디

Production Facilities: 2250T

Application: 6speed

■ END USER: HMC/KMC

Production Facilities: 3550T

Application : THETA

END USER : HMC/KMC

ENGINE CYLINDER BLOCK

Production Facilities: 800T

Application: 6speed, 8speed

• END USER : HMC/KMC

Production Facilities: 1400T

Application : GAMMA, KAPPA

END USER : HMC/KMC

VALVE BODY

DCT HOUISNG/CASE

Production Facilities: 2500T

Application: 7speed DCT

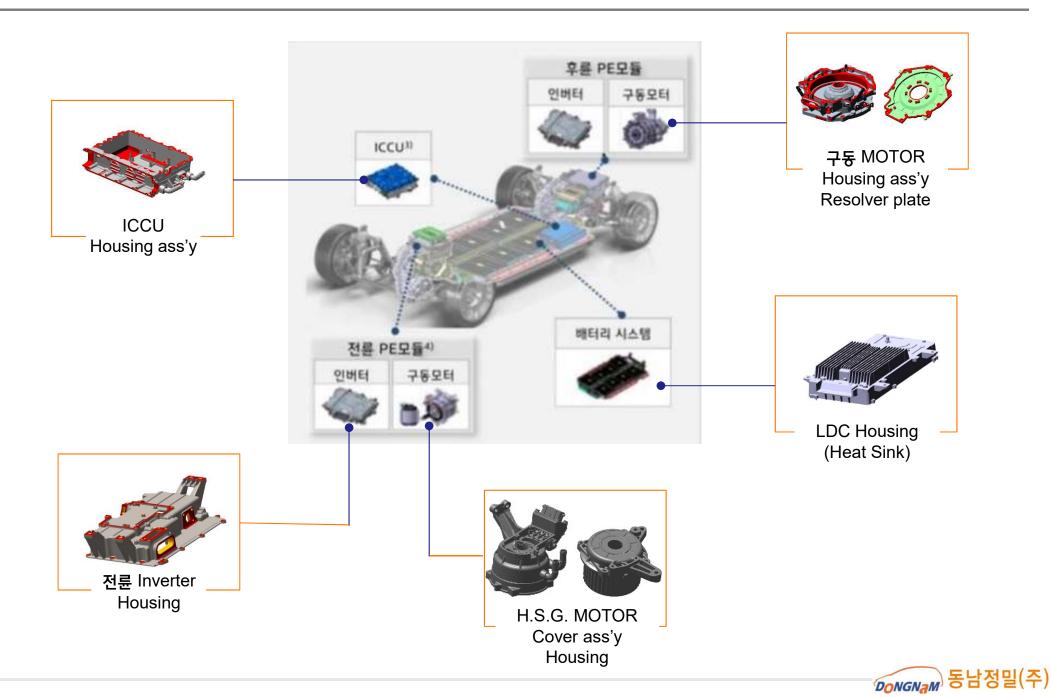
■ END USER: HMC

LADDER FRAME

Production Facilities: 2250T

Application : LAMDA

END USER : HMC/KMC


TIMING CHAIN COVER

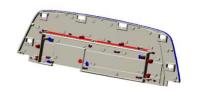
변속기 부품

엔진 부품

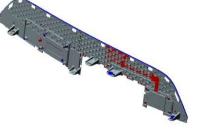
5-2. 주요 생산제품(전동화 부품)

5-3. 주요 생산제품(전장부품_마그네슘 부품)

Production Facilities: 2500T


Application : Digital cluster

■ END USER: GM


■ 적용차종 :캐딜락 에스컬레이드

Material : Mg(AZ91D)

■ Size: 958 × 162 × 119

IPC Core Plate

ICS Core Plate

Production Facilities: 2500T

(2Cav)

Application : Digital cluster

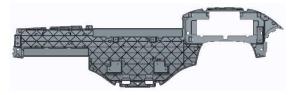
■ END USER: GM

■ 적용차종: 캐딜락 에스컬레이드

Material : Mg(AZ91D)

■ Size: 452 × 154 × 41

Production Facilities: 2500T


Application : Digital cluster

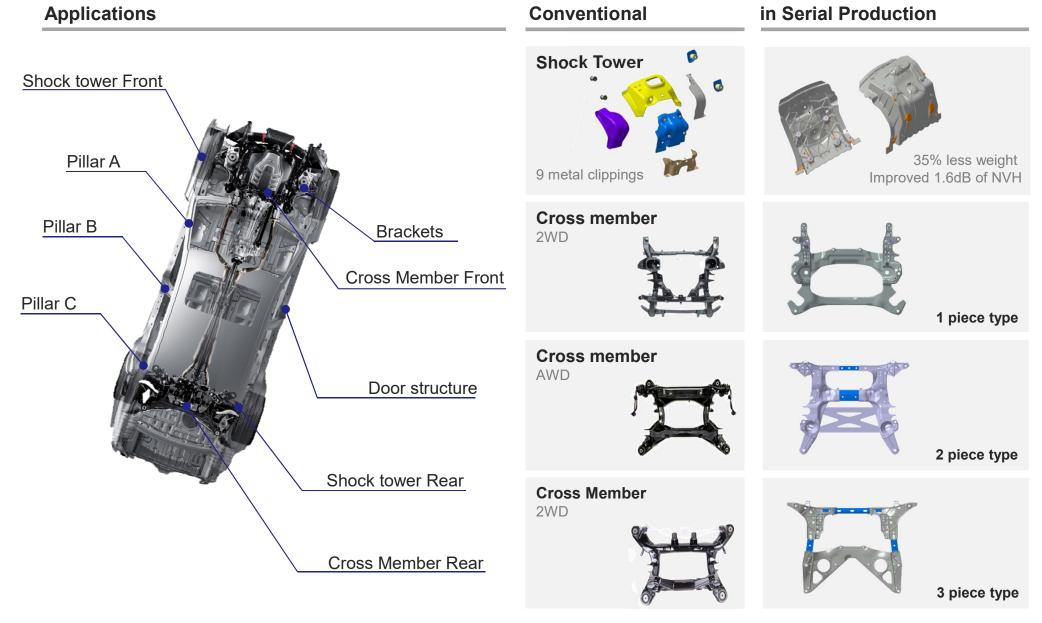
■ END USER: BENZ

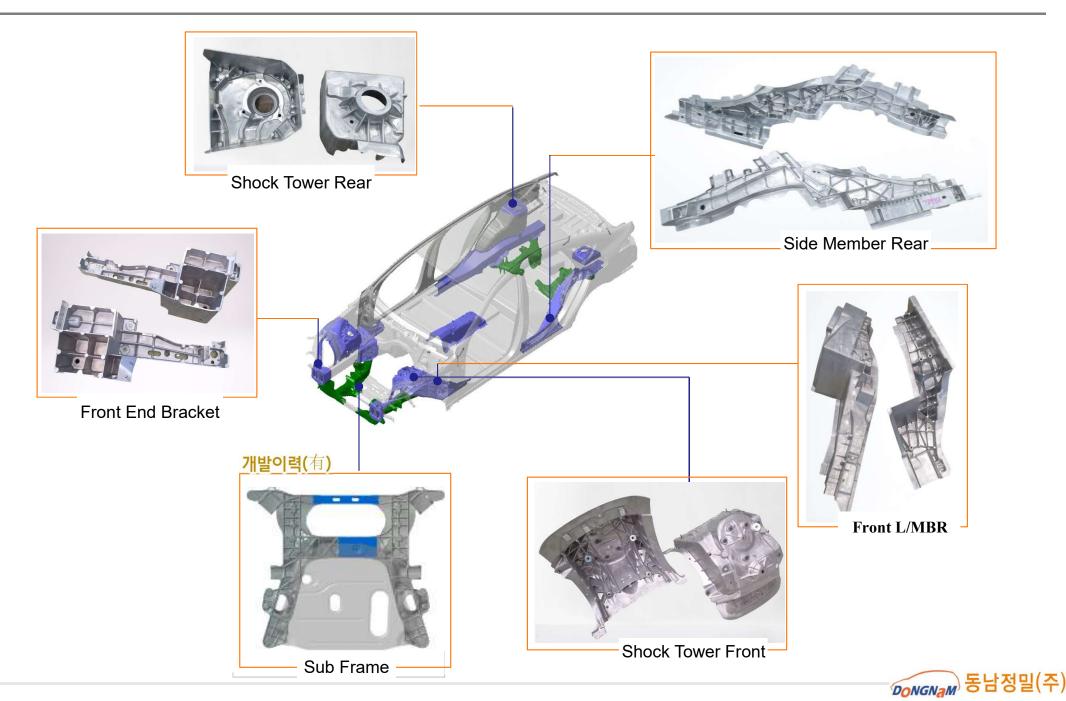
■ 적용차종: EV

Material : Mg(AZ91D)

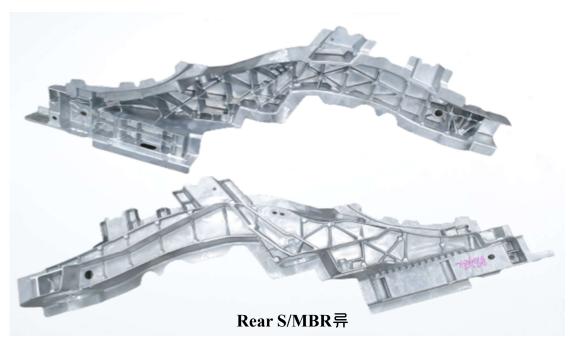
■ Size: 1206 × 356 × 67

Rear Frame


마그네슘 부품


5-4. 주요 생산 제품(조향/ 고강도 차체 부품)

5-5. 주요 생산 제품(샷시 & 차체 부품)


5-6. 주요 생산 제품(차체 Under Body부품)



5-6. 주요 생산 제품(차체 Under Body부품)

HMC (중대형 EV용 under body류)

6. 주요 생산설비 현황

고압 D/C 설비

	ALCO III	HILL	M OH	HI HILL	成型
3,550 t	2	2	0	1	5
2,500 t	3	3	1	2	9
2,250 t	2	3	1	1	7
1,400 t	3	0	0	0	3
1,250 t	8	3	6	3	20
850 t		3			3
800 t	12	7	1	3	23
350 t	1	0	0	2	3
total	31	21	9	12	73

머시닝센터 & 기타설비

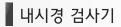
	AT TOTAL	HILL	M TIL	WE FILE	成
NC Machine	129	103	113	62	407
고압세척기	17	15	12	4	48
자동검사기	2	3	2	2	9
리크검사기	24	13	12	2	51
X-ray 촬영	2	3	1	1	7
3차원 측정기	6	10	4	3	23
함침기	2	2	1	1	6
표면처리 (Anodizing)	0	1	0	0	1
total	182	150	145	75	55 2

7. 주요 품질보증설비

3차원 측정기

조도 형상 측정기

엑스레이(CT) 검사기


조도형상측정기

인장시험기

경도계

		보증/	시험 설비	l연황	
	동남 정밀	코넥	북경 동남	일조 코넥	
3차원측정기 (3D스캐너)	6 (1)	10	4	3	23
분광시험기	1	1	1	1	4
광학현미경	1	1	1	1	4
조도측정기	1	2	1	1	5
엑스레이 (CT포함)	4	2	1	1	8
조도형상측정기	1	1	1	1	4
인장시험기	1	1	-	1	3
내시경 검사기	1	9	-	-	10
경도계	2	2	1	1	6
합 계	18	29	10	10	67

[금형설계, 제조㈜ DTM]

■ DTM/동남정밀/코넥

제품 설계 금형설계 최적화 및 해석

금형 제작

고객사 협업/지원

- PRO-E, CATIA, UG (Software)
- Simulation (Anycasting)

[자동차부품 DC사업]

▋동남정밀/코넥/중국공장/미국공장

HPDC 주조 &열처리

가공

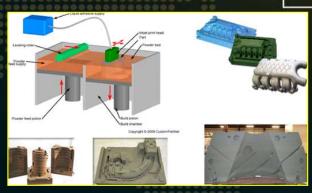
조립

- PRO-E, CATIA, ACAD (Software)
- Simulation (MAGMA, Anycasting, Cast designer)

▮울산동남 / 서산동남 / 마산동남

INGOT (Al Alloy-Raw Materials) 고품위 Al합금 설계, 제조

주요 고객사


HYUNDAI MOTOR GROUP

LGE

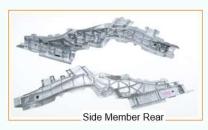
TESLA

수출/기타

감사합니다

TOTAL SOLUTION Raw materials & Die(Mold) & Die-casting & Machining & Assembly 끊임없는 연구개발을 통한 소재 부품산업의 선두주자

동남정밀㈜ 핵심 보유기술현황

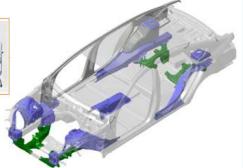

HKMC용 프리미엄급 및 전기차 경량화 30%이상 알루미늄 일체형 Under Body 차체부품 기술개발

(총개발기간: 5년, 2015~2020 / 생산라인 투자비: 250억원 /정부R&D 연계 개발비: 30억)

- 자동차 시장의 내연기관에서 전동화 대전환
- 전동화에 따른 차량 경량화 대두(배터리 손실 저감)
- 차량 경량화 실현 AI, Mg 경량소재 고진공DC기술 요구
- 현대기아차 프리미엄급 차체경량화 기술경쟁력 확보

확보기술

- 고진공DC 양산라인 최적화 (2500~3550톤: 4라인)
- 고진공DC용 금형 sealing, 주조방안 설계, 해석
- 고진공 다이캐스팅 공정(용탕, 주조, 열처리) 요소기술개발
- 주조,열처리 열변형 측정제어 기술/ 5축 가공기술 확보



[HKMC 프리미엄급 under Body부품 5종 개발 및 양산 기술확보]

HKMC 프리미엄급 under body부품 (개발 및 양산품)

기대성과

- HKMC 프리미엄급 차종 under body부품 5종 개발 및 양산(국내 최초 고진공DC 차체부품 개발 및 양산)
- Under body부품(Front: shock tower, lower member, end bracket/ Rear: side member, shock tower)
- 원천기술 확보 특허 출원 10건(고진공 공정 및 금형씰링 기술 등)

■ 고진공DC 제조공정 및 품질관리 항목

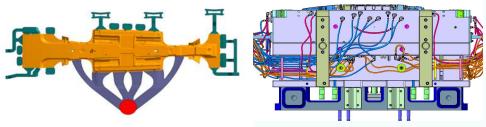
공정번호	OP10	OP20	OP30	OP40	OP50
공정명	원재료(Ingot) 입고	용해	탈가스	주조	트리밍
공정약도					CAS MYEONG TO TOO TO THE TOO THE
요구사항	• MS141-44	-	-	-	-
품질관리 항목	• 화학성분 - n=1회/매 입고 LOT • 용해온도 : 760±30℃ • 신재:스크랩비율 = 100:0		• DI : 3% 미만 - n=1회/shift • K-MOLD : 0.5 이하 - n=1회/shift	• 외관 유해한 흠 없을 것 - n=전수	• 트리밍 후 결육 없을 것 - n=전수
공정번호	OP60	OP70	OP80	OP90	OP100
공정명	X-RAY	열처리	사상 및 교정	가공	세척
공정약도	X-RAY	열처리	사상 및 교정 PAE MYEONG TO THE MYEONG TO THE MYEONG TO THE MYEONG	가공	세척
	X-RAY • MS141-44	열처리 • MS141-44		thiron	

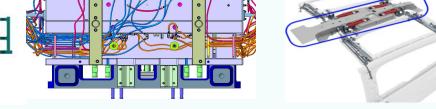
■ 고진공DC 제조공정 및 품질관리 항목

공정번호	OP110	OP120	OP130	OP140	
공정명	H/W조립	2차 교정 및 검사	도장	출하	
공정약도	JKI EV Gide Member SEJI LM	EN SA GAP SA	Nat		
요구사항	• 도면	• 검사기준서	• MS652-34	• 검사기준서	
품질관리 항목	• 체결토크 - n=100% 전수검사 (너트런너, F/Proof 시스템)	• 검사구 - GAP, 단차 - n = 100% 전수검사	• 도장두께 : 20# 이상 - n=1회/shift(도장업체) • 기타 항목 정기검사	• 도장 누락 및 외관 유해한 홈 없을 것	

전기차 GVC확충을 위한 수출용 경량화 30%이상 알루미늄 일체형 Top Body 차체부품 기술개발

(총개발기간: 2년, 2020~2022 / 생산라인 투자비: 100억원 /정부R&D 연계 개발비: 22억)


- 자동차 시장의 내연기관에서 전동화 대전환
- 전동화에 따른 차량 경량화 대두(배터리 손실 저감)
- 차량 경량화 실현 AI, Mg 경량소재 고진공DC기술 요구
- GVC(Global Value Chain)확충 기술경쟁력 확보


확보기술

- 고강도 고인성 AL합금 국산화 개발(A365계열)
- 고진공다이캐스팅용 금형, 주조방안 설계, 해석
- 고진공 다이캐스팅 공정(용탕, 주조, 열처리) 요소기술개발

(TESLA, MOEL X)

● 주조,열처리 열변형 수치해석 및 변형량 제어기술

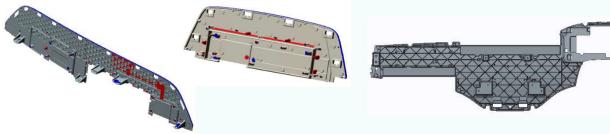
[일체형 Top Body부품/ 주조방안/ 금형 설계 및 CAE해석 기술개발]

기대성과

- GVC확충 (美 TESLA 직접 수출): 국내 최초 알루미늄 고진공DC 차체부품 수출(매출 중대 : 100억/년)
- 전기차, 친환경차 경량 차체부품 시장 기술선도, 선점 (특히 고강도 고인성 top body, under body parts)
- 원천기술 확보 특허 출원 2건(알루미늄 차체부품 변형제어 열처리 기술 등)

■ 대형 마그네슘 콜드챔버 다이캐스팅기술 -국책과제 소재부품기술개발 사업 수행

Cold chamber 2500톤급 마그네슘 AZ91D합금 다이캐스팅 공정기술 및 프리미엄급 자동차 전장부품 기술개발


(총개발기간: 3년, 2020~2022 / 생산라인 투자비: 70억원 /정부R&D 연계 개발비: 30억)

- 자동차 시장의 경량화 부품 적용확대
- 차량 전장화 부품확대→ 경량부품 대두(Mg)

- 실용금속中 최대 경량화 효과 AI대비 30%, Mg기술 요구
- 초대형 전장부품 Mg 다이캐스팅 기술개발 요구

확보기술

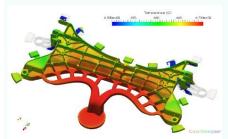
- 초대형 2500톤급 콜드챔버 Mg 주조시스템 기술확보 초대형 Mg DC 공정(용해, 주입, 주조, 트리밍) 요소기술개발
- 대형 Mg DC용 금형설계, 주조방안 설계, 해석기술
- 변형제어 및 절삭가공(5축) 기술, 공정 안전(화재) 관리기술

[Mg다이캐스팅 Dashboard 적용차종: 캐딜락 에스컬레이드, 벤츠 EQS]

기대성과

- 알루미늄 대비 경량화 30%실현 콜드챔버 대형 다이캐스팅 기술확보 (국내 유일 2500톤급 Mg 다이캐스팅 기술)
- 친환경차 경량 전장부품 시장 기술선도, 선점 (Dash board frame 3종 개발 및 양산 : 매출 100억원/년)
- ◆ 수출 고객선 GVC 확충(DNPC→LGE→GM, BENZ)

고진공 알루미늄 다이캐스팅 적용 경량화율 30%이상 랙하우징일체형 프런트 서브프레임 부품화 기술개발


(총사업기간: 5년, 2022~2026 /주관/참여: 동남정밀, 코넥, 서진산업 등 / 국비 총사업비: 171억)

- 자동차 연비/전비 향상 요구→ 부품 경량화 가속
- 특히 EV카 차량 경량화 대두(배터리 손실 저감)
- 차량 경량화 실현 AI, Mg 경량소재 고진공DC기술 요구
- 고강도 고인성 일체형 서브프레임 부품 기술개발 요구

개발내용

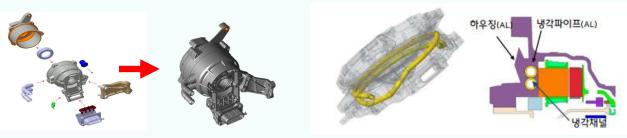
- 고강도 고인성 섀시용 AI 합금조성 설계 및 개발
- 고진공DC용 서브프레임 부품, 금형, 주조방안 설계
- 고진공 다이캐스팅 공정(용탕, 주조, T5처리) 기술개발
- 인서트 일체형 하이브리드 주조기술 및 신뢰성 확보기술

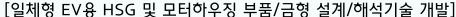
[초대형 일체형 Sub Frame부품/ 주조방안/ 금형 설계 및 CAE해석 기술개발]

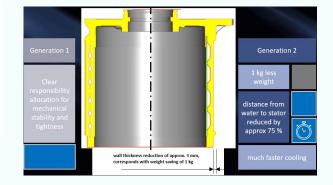
기대성과

[고진공DC 일체형 서브프레임 개발사례(동남정밀)]

- 차량 경량화 30%이상 실현 고진공DC기술 확보 및 선점으로 매출 증대: 500억/년 이상
- 친환경차 경량 차체부품 시장 기술선도, 선점 (특히 고강도 SUB FRAME, CROSS MEMBER류)
- 원천기술 확보 특허 출원 (정부과제 연계에 의한 IP기술확보) 10건 이상


EV용 구동계 모터하우징의 냉각효율향상을 위한 일체형 부품설계 및 탄소중립 고품위 다이캐스팅 공정기술과 부품화 기술개발


(총사업기간: 3년, 2023~2025 /주관/참여: 동남정밀, 인서트개발업체 / 총사업비: 30억)


- 자동차 시장의 내연기관에서 전동화 급변
- EV용 냉각효율향상 일체형 모터하우징 수요급증
- 고방열 특성 경량 AL소재 및 냉각효율 향상기술 요구
- 고방열 냉각PIPE 인서트형 고기능 DC기술개발 요구

개발내용

- 고방열성 모터하우징용 AI 합금조성 설계 및 개발
- 일체형 고냉각효율 부품/금형, 주조방안 설계, 해석
- 고기능 냉각PIPE 인서트DC(예열, 장착 자동화) 요소기술
- 인서트형상 유지기술 및 신뢰성 확보 검사공정 최적화

기대성과

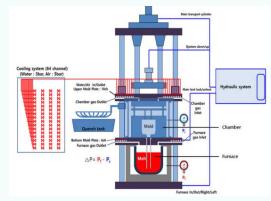
[모터하우징 인서트삽입 일체형 설계사례(선진사)]

- 일체형 하이브리드 DC화에 의한 경량화 20%이상, 냉가효율 30%이상, 원가절감 30% 실현 기대
- 친환경차 경량 구동부품 고기능화 부품 시장 기술선도, 선점 (특히 고냉각효율 HSG housing, Motor housing류)
- 원천기술 확보 (정부과제 연계에 의한 IP기술확보) 특허 출원 5건 이상

고진공 저압주조 및 CPC 차압주조기술을 이용한 e-GMP용 고품위 저원가 현가부품(서브프레임, 너클, 암류) 기술개발

(총사업기간: 5년, 2023~2025 /주관/참여: 동남정밀, 화신 / 국책사업비: 100억)

- 자동차 시장의 내연기관에서 전동화 급변
- 전동화에 따른 차량 경량화 대두(차체, 섀시부품)
- 경량화 실현 섀시부품 AI화 원가경쟁력 주조기술 요구
- 고강도 하이브리드형 서브프레임 부품 기술개발 요구


개발내용

- 고강도 서브프레임용 AI 합금조성 설계 및 개발
- 차압주조(CPC)용 부품/금형, 주조방안 설계, 해석
- 차압주조(CPC) 공정(용탕, 주조, 열처리) 요소기술개발
- 생산성향상 기술 및 신뢰성 확보 검사공정 최적화

[하이브리드형 프런트/리어 Sub Frame부품/ 주조방안/ 금형 설계 및 CAE해석]

[차압주조(CPC) 주조공정 기술]

기대성과

- 섀시부품 경량화 30%이상 실현 차압주조(CPC)기술 확보 및 선점으로 매출 증대
- 친환경차 경량 섀시부품 시장 기술선도, 선점 (특히 고강도 sub frame, cross member, suspension arm류)
- 원천기술 확보 (정부과제 연계에 의한 IP기술확보) 특허 출원 3건 이상

■ 열처리/비열처리형 고품위 알루미늄 합금 -국책 및 자체개발사업 진행중(2021~)

탄소중립 대응 고진공DC용 열처리 및 비열처리형 알루미늄 신합금개발 및 고품위 재생기술 개발

(총사업기간: 5년, 2021~2025 /주관/참여: 동남정밀, 코넥, 동남 / 국책사업비: 10억)

- 탄소중립 규제 대응 경량화, 재활용 기술수요 증대
- 부품 경량화 가속으로 고비강도 AI, Mg소재 기술 요구
- 전동화에 따른 차량 경량화 대두(배터리 손실 저감)
- 열처리/비열처리형 고비강도 AL합금소재 수요증대

개발내용

- 고강도 고인성 열처리형 AlSi10MnMg계 합금 국산화 초고비강도 Al-Zn 계, AlMg(3~6)Zn(3~6)계 개발중
- 비열처리형 AlSi7MnMg계, AlMg5SiMn계 개발중 전신재+중력(저압)주조재 스크랩 고품위 재활용 기술개발

	•	٠.	ı	, -	-																	
ast		j ®.	-37	[A		9Mr	Mo	Zr]				Mag	sima	B_E	59 [/	AIMo	g5Si	2Mr	1]			
ad comp	osition	of Cas	stanii-37 le	. The legal	third min	wd.						Chemical o	omposition	of Magnimu	d-69 in the i	ngot (%) if a	nees]					
Τ.		100	G ₄	Min	Mar	26	100	20	- 10		others	1961	- 31	14	0	Ma	My	Zn.		- No	stress	
				0.35	-		0.1	0.1		5.005		min.	1.8			6.5	6.0					
10	5	0.15	0.06	0.6	8.06	0.07	0.5	6.3	0.95	6.005	0.10	Print.	2.6	6.2	6.00	6.8	6.3	037	0.30	0.304	6.3	
al per	perties											Mechanical										
e pu	kness			YTS			urs			Elongatio		Wat										
<u> </u>				Res MAN			R, Mrs			E [%]			< 2		>10			> 300		10-1		
2-				199-150			290-100			10-14		2-4			169-226		210-348		11-22			
														4+6 346+179						9+56		
5-	7			80-118			230-250 280-250			10-14 10-14			4+6 E+12		146 - E 126 - E			330-368 330-368		8+5 8+1		
		uc.	t®-4	42 [AII	Mg4	280-250					Mag	sim		-plu:	s [A	JMg	330-368	2Mr	1-1		
st	adı					0	280-250						sim		-plu:	s [A	JMg	330-368	2Mr	1-1		
st	adı			42 [4 (Note	0	280-250			10-16	ohes	Mag	sim		-plu:	s [A	JMg	330-368	2Mr	nZr]		
st	adı		darleet-42	42 [4 (Note	and a	186-186 1Fe	2]		10-16	others	Mag	sim	d Magaina Fo	-plu:	S [A	IMg	16Si	т.	nZr]	others	
st	adı		father 12	42 [4 Notes	and a	186-186 1Fe:	2]		10-16	ethers Ba	Mag	sim	d Magaina	plu:	S [A	JMg	16Si		nZr]		
sti	adı	of Cas	Fe 1.5 1.7	42 [4 (Wester	mencel and	1Fe:	2]		19-14	24	Mag	Sim	fo 0.18	- plu:	S [A	IMg	16Si	т.	nZr]	others	
sti	adı	of Cos	fe 1.5 1.7	42 [4 (Wester		1Fe:	2]	of the	19-14	Be Nandness (70)	Mac Chemical or 194 190. 190.	Sim	fo 0.18	- plu:	S [A	IMg	16Si	т.	nZr]	Office S	
st	adı	of Cas	fe 1.5 1.7	42 [4 (Notes		1Fe	2]	of the	19-14	De .	Mac Chemical or 194 190. 190.	Simmassian Si 23 24 properties	fo 0.18	- plu:	S [A	IMg	16Si	т.	Zr]	others Maj B	

[열처리형/ 비열처리형 상용합금의 국산화(Silafont36 완료) 및 개발중]

Grade	Si	Fe	Cu	Mn	Mg	Zn	<u>Ti</u>	V	Zr	Sr	(Each)	Al	번호
TESLA (374.1)	6.5-8.5	0.10~ 0.25	≤0.02	0.35- 0.70	0.15- 0.40	≤0.03	0.04- 0.15	1-	-	0.010	≤0.05	remaine L	ж
조성1	8.06	0.138	0.006	0.457	0.15	0.04	0.082	0.01	0.004	0.009	-	91.0	1C(수녕) 1H(공녕)
조성2	8.39	0.140	0.006	0.730	0.39	0.03	0.066	0.01	0.005	0.043	1.5	90.5	2C(수념) 2H(공녕)
조성3	7.44	0.138	0.005	0.474	0.182	0.01	0.077	0.01	0.0044	0.024	(4)	91.5	3C(수녕) 3H(공녕)
조성4	7.60	0.135	0.005	0.462	0.294	0.01	0.080	0.010	0.0048	0.021	(-)	91.3	4C(수녕) 4H(공녕)
조성5	7.78	0.137	0.006	0.472	0.374	0.01	0.079	0.01	0.0046	0.021	-	91.0	5C(수녕) 5H(공녕)
조성6	7.70	0.135	0.005	0.467	0.374	0.01	0.078	0.01	0.0042	0.030		91.1	6C(수녕) 6H(공녕)
조성7	7.68	0.131	0.005	0.480	0.370	0.01	0.077	0.01	0.0048	0.049	-	91.1	7C(수녕) 7H(공당)
조성8	6.69	0.131	0.005	0.523	0.302	0.01	0.084	0.01	0.004	0.015		92.1	8C(수녕) 8H(공녕)
조성9	6.53	0.140	0.005	0.523	0.267	0.008	0.081	0.031	0.0039	0.011	-	92.3	9C(수념) 9H(공녕)
조성10	6.49	0.152	0.005	0.505	0.276	0.011	0.084	0.029	0.0376	0.010	7-1	92.3	10C(수녕) 10H(공당)

[고품위 AL합금의 자체특허 기술 확보(개발중)]

기대성과

- 친환경, 전기차 부품 대응, 고품위 AL경량합금 소재 기술확보(열처리형, 비열처리형 합금)
- 2050 탄소중립 규제대응, 전신재 및 중력/저압주조재의 고품위 DC재(차체, 섀시재료)로의 재활용 기술확보
- 원천기술 확보 특허 출원 등 5건 이상(목표)

■ 핵심기술 특허 및 신기술인증 보유 LIST

보유 특허 기술 현황

No	명칭	권리자	등록일	등록(출원)번호
1	캐비티를 밀폐공간보다 먼저 진공화시키는 고진공 다이캐스팅 방법	동남정밀	20140415	1013875720000
2	스프레이 카세트	동남정밀	20150408	1015121480000
3	이형제의 누출 억제 기능을 가지는 다이캐스팅 금형용 스프레이 카세트	동남정밀	20150408	1015121490000
4	이형제 스프레이 카세트	동남정밀	20150408	1015121500000
5	다이캐스팅 금형용 이형제 스프레이 카세트	동남정밀	20150408	1015121510000
6	다이캐스팅 금형용 진공 형성방법	동남정밀	20150408	1015121520000
7	공기수용부를 가지는 다이캐스팅 금형	동남정밀	20151002	1015591130000
8	감소된 용탕 접촉면적을 가지는 다이캐스팅 금형	동남정밀	20151002	1015591140000
9	용탕 부착력이 감소된 다이캐스팅 금형	동남정밀	20151002	1015591150000
10	경량형 레이들	동남정밀	20150617	1015310440000
11	레이들	동남정밀	20150617	1015310450000
12	경량형 용탕 운반용 레이들	동남정밀	20150420	1015151940000
13	용탕 운반용 레이들	동남정밀	20150511	1015209570000
14	용탕 부착력 감소를 위한 공기수용부들을 가지는 다이캐스팅 금형	동남정밀	20160204	1015940940000
15	이젝트핀과 이젝트플레이트를 구비한 다이캐스팅 금형용 이젝팅 유닛	동남정밀	20170714	1017601270000
16	이젝트핀의 노출이 가능한 구조를 가지는 다이캐스팅 금형용 이젝팅 유닛	동남정밀	20170714	1017601280000
17	다이캐스팅 금형용 이젝팅 유닛	동남정밀	20170714	1017601290000
18	이젝트핀과 이젝트플레이트를 구비한 다이캐스팅 금형	동남정밀	20170714	1017601240000
19	이젝트핀의 노출이 가능한 구조를 가지는 다이캐스팅 금형	동남정밀	20170714	1017601250000
20	슬라이드 코어가 있는 다이캐스팅 금형	동남정밀	20180612	1018689860000
21	언더컷 성형용 슬라이드 코어가 있는 다이캐스팅 금형	동남정밀	20180612	1018689870000
22	에어퀜칭을 이용한 다이캐스팅 연속열처리장치 및 그방법	동남정밀	20220627	1020220077963
23	고연성 다이캐스팅 차체부품 저온열처리 방법	동남정밀	20221219	1020220178199
24	고진공 다단가압 저압주조장치 및 그 방법	동남정밀	20230131	1020230012599

보유 인증 현황

No	명칭	시험인증기관	주요 시험 및 인증 내용
1	신기술 인증서	중소기업청	Valveless 진공다이캐스팅 제조기술
2	기계류 부품소재 품질인증서	국립기술품질원	자동변속기 Oil Pump용 경량 Reaction Shaft Support
3	부품소재 전문기업 확인서	산업자원부	부품소재 전문기업 등의 육성법에 의한 부품소재 전문기업확인서

